Zerui Wang | Curriculum Vitae

Unit 520-522, Core Building 1 (1E), Hong Kong Science Park, Shatin, N.T., Hong Kong | zerui.j.wang@gmail.com

SUMMARY

- Solid training in robotics, mechatronics, and control theory with good publication record.
- Experience in researches related to medical robotics with emphasis on both scientific and engineering aspects.
- Efficient individual contributor, team leader, and team player.

EMPLOYMENT

Co-Founder & COO & R&D Director - Cornerstone Robotics Limited	Oct. 2019 — Present
 Co-lead the research and development of surgical robot systems; 	
 Co-lead the company operation, fund raising, business strategies. 	
Research Assistant Professor — Department of Mechanical and Automation Engineering, The Chinese	Mar. 2018 — Sep. 2019
University of Hong Kong	Mai. 2010 - 0cp. 2019
 Led research about advanced visual servoing algorithms for deformation control; 	
 Led intuitive interface development of surgical robot assistants from UI Software, Visual Servoing, to 	
Control Algorithms;	
 Led development of surgical robot systems from mechatronics, control algorithms, and software. 	
Post-Doctoral Fellow — Department of Mechanical and Automation Engineering, The Chinese University	Sep. 2017 — Feb. 2018
of Hong Kong	
 Conducted researches on vision-based deformable object manipulation, dissection, and suturing. 	
EDUCATION The Chinese Univ. of Hong Kong — Ph.D. Degree in Mechanical & Automation Engineering	Sep. 2013 — Sep. 2017
Supervisor: Prof. Yun-Hui Liu	
• Overall GPA: 3.97/4.	
• Skills: C++, Python, bash, Matlab, Linux, LaTex, SolidWorks.	
 Designed and fabricated a compliant safe joint which has multiple states. The joint works as a normal rigid 	
joint when the working load is smaller than a predefined threshold and becomes compliant when the	
working load exceeds the threshold. The design was patented in US.	
 Proposed a new method to fully control complete 4-image-DoF manipulation of laparoscopic instruments 	
(with RCM mechanism) based on the geometric features of a designed marker in a 2D image.	
Developed a vision-based calibration method for dual remote center-of-motion (RCM) based robot arms.	
The method does not require any external tracking sensors and directly uses images captured by the	
endoscopic camera and the robot encoder readings as calibration data.	
 Proposed a generic autonomous optimization-based framework for manipulating unknown deformable 	
objects in a constrained environment with unexpected disturbances.	
Johns Hopkins University — Visiting Student in Computer Science	Jan. 2016 — Apr. 2017
 Supervisors: Prof. Russell H. Taylor, Prof. Peter Kazanzides 	
 Proposed a semi-autonomous clinician-in-the-loop strategy to perform the laparoscopic cryoablation of 	
small kidney tumors.	
 Proposed a method of controlling a continuum manipulator in free or obstructed environments with no 	
prior knowledge about the deformation behavior of the continuum manipulator and the stiffness and	
geometry of the interacting obstructed environment.	
 Contributed to dvrk-ros and cisst-saw software environment in terms of trajectory generator, Matlab 	
wrapper, joint torque control interface, etc.	
 Beihang University — B.Eng. Degree in Quality and Reliability Engineering Overall GPA: 3.84/4 (90.04/100), rank 1st in my school. 	Sep. 2009 — Jun. 2013

AWARDS AND HONOURS

•	Best Innovation Prize in Surgical Robot Challenge of Hamlyn Symposium	Jul. 2017
•	Overseas Research Attachment Programme Scholarship	Oct. 2015
•	Reaching Out Award (Government Scholarship)	Jun. 2015
•	Hong Kong PhD Fellowship (Government Scholarship)	Aug. 2013
•	Champion of Innovative Underwater Robot Design RoboCup Open (China)	Nov. 2012
•	The 2nd-Prize in National University Mechanical Innovation Competition (10%)	Jul. 2012
•	The 2nd-Prize in National Undergraduate Physics Competition (7.5%)	Dec. 2010
•	National Scholarship for University Students (2.6%)	Nov. 2010
•	Excellent Students Awards of Beijing (1.1%)	Nov. 2011
•	Elite Student of Beihang University (3%)	Nov. 2011
•	Outstanding Student Award, Yang Weimin Special Scholarship (0.8%)	Mar. 2012
•	The 2nd-Prize Scholarship of Academic Contest (3%)	Dec. 2011
•	The 1st-Prize Scholarship of Science and Engineering Contest (7%)	2010-2012
•	The 1st-Prize Scholarship of Academic Performance (3%)	2010-2012
•	The 2nd-Prize in Chinese Physics Olympiad (CPhO)	Sep. 2008
•	The 1st-Prize in National Olympiad in Informatics in Provinces (NOIP)	Dec. 2007

Professional Experience

Academic Service

- Leading Editor of Frontiers in AI and Robotics Special Issue: Learning, Sensing and Control for Autonomous Manipulation of Deformable Objects
- Associate Editor of 2019 IEEE/RSJ IROS

Grant

 Image-guided Automatic Robotic Surgery (Theme-based Research Scheme 2018/19, Co-Investigator, Total Research Funding: HK\$47.341 millions equivalent to US\$6.03 millions)

Examinership

- MPhil. Thesis Defense entitled "Development of Portable and Convenient to Use Cable Robot System" in July 2019
- MPhil. Thesis Defense entitled "Ray-based Interference Free Workspace Analysis and Path Planning for Cable-Driven Robots" in January 2019
- Ph.D. Thesis Defense entitled "Proprioception-Aided Visual State Estimation for Mobile Robots" in April 2019

Teaching

 MAEG 2020 Engineering Mechanics (Enrollment: 98) 	Fall 2018		
Teaching Assistance			
ENGG5402 Advanced Robotics	Spring 2015		
 ENGG1100 Introduction to Engineering Design 	Fall 2014		
 MAEG1010 Introduction to Robot Design 	Spring 2014		
 ENGG1100 Introduction to Engineering Design 	Fall 2013		

PUBLICATIONS

* denotes co-first authorship; † denotes corresponding authorship.

Journal

- 20. Wu, J., Chen, W., Guo, D., Ma, G., Wang, Z., He, Y., Zhong, F., Lu, B., Wang, Y., Cheung, T. H., Liu, Y.-H., "Robot-enabled Uterus Manipulator for Laparoscopic Hysterectomy with Soft RCM Constraints: Design, Control and Evaluation," IEEE Transactions on Medical Robotics and Bionics (T-MRB), Jun. 2022.
- Wang, Z., Lu, B., Gao, X., Jin, Y., Wang, Z., Cheung, T. H., Dou, Q., Heng, P. A., and Liu, Y.-H., "Content-based Surgical Video Retrieval via Unsupervised Feature Disentanglement," IEEE Transactions on Medical Imaging (T-MI), vol. 75, p. 102296, Nov. 2021.
- Li, D., Wang, Z., and Liu, Y.-H., "Honeycomb Jamming: an Enabling Technology of Variable Stiffness Reconfiguration," Soft Robotics (SORO), Mar. 2021.
- He, K., Sui, C., Lyv, C., Wang, Z., and Liu, Y.-H., "3D Reconstruction of Objects with Occlusion and Surface Reflection Using a Dual Monocular Structured Light System," Applied Optics (Appl. Opt.), vol. 59, no. 29, pp. 9259-9271, Oct. 2020.
- Alambeigi, F.*, Wang, Z.*, Liu, Y.-H., Taylor, R. H., and Armand, M., "A Versatile Data-Driven Framework for Model-Independent Control of Continuum Manipulators Interacting with Obstructed Environments with Unknown Geometry and Stiffness,", arXiv Preprint, 2020.
- Wu, J., Wang, Z.[†], Chen, W., Wang, Y., and Liu, Y.-H., "Design and Validation of A Novel Leaf Spring Based Variable Stiffness Joint with Reconfigurability," IEEE/ASME Transactions on Mechatronics (T-MECH), vol. 25, no. 4, pp. 2045-2053, Aug. 2020.
- Sui, C., He, K., Lyu, C., Wang, Z.[†], and Liu, Y.-H., "Active Stereo 3D Surface Reconstruction Using Multi-Step Matching," IEEE Transactions on Automation Science and Engineering (T-ASE), vol. 17, no. 4, pp. 2130-2144, May 2020.
- Yip, H.M., Wang, Z., Navarro-Alarcon, D., Li, P., Cheung, T.H., Greiffenhagen, C., and Liu, Y.-H., "A Collaborative Robotic Uterine Positioning System for Laparoscopic Hysterectomy: Design, Modeling and Experiments," International Journal of Medical Robotics and Computer Assisted Surgery, vol. 16, no. 4, pp. 1-15, e2103 Mar. 2020.
- Sui, C., Wu, J., Ma, G., Wang, Z.[†], and Liu, Y.-H., "A Real-Time 3D Laparoscopic Imaging System: Design, Method and Validation," IEEE Transactions on Biomedical Engineering (T-BME), vol. 67, no. 9, 2683-2695, Sep. 2020.
- Zhong, F., Wang, Z.[†], Chen, W., Wang, Y., and Liu, Y.-H., "Hand-Eye Calibration of Surgical Instrument for Robotic Surgery Using Interactive Manipulation," IEEE Robotics and Automation Letters (RA-L), vol. 5, no. 2, pp. 1540-1547, Apr. 2020.
- Zhong, F., Li, P., Shi, J., Wang, Z.[†], Wu, J., Chan, J. Y. K., Leung, N., Leung, I., Tong, M. C. F., and Liu, Y.-H., "Footcontrolled Robot-Enabled EnDOscope Manipulator (FREEDOM) for Sinus Surgery: Design, Control and Evaluation," IEEE Transactions on Biomedical Engineering (T-BME), vol. 67, no. 6, pp. 1530-1541, Jun. 2020.
- Yang, B.*, Chen, W.*, Wang, Z.[†], Mao, J., Lu, Y., Wang, H., and Liu, Y.-H., "Adaptive Region-Based Field of View Control of Laparoscopes with RIVP-RCM Constraints," IEEE Transactions on Medical Robotics and Bionics (T-MRB), vol. 1, no. 4, pp. 206-217, Oct. 2019.
- Zhong, F., Wang, Y., Wang, Z.[†], and Liu, Y.-H., "Dual-Arm Robotic Needle Insertion With Active Tissue Deformation for Autonomous Suturing," IEEE Robotics and Automation Letters (RA-L), vol. 4, no. 3, pp. 2669-2676, Apr. 2019.
- Alambeigi, F., Wang, Z., Hegeman, R., Liu, Y.-H., and Armand, M., "Autonomous data-driven manipulation of unknown anisotropic deformable tissues using unmodelled continuum manipulators," IEEE Robotics and Automation Letters (RA-L), vol. 4, no. 2, pp. 254-261, Apr. 2019.
- Alambeigi, F.*, Wang, Z.*, Hegeman, R., Liu, Y.-H., and Armand, M., "A robust data-driven approach for online learning and manipulation of unmodeled 3-D heterogeneous compliant objects," IEEE Robotics and Automation Letters (RA-L), vol. 3, no. 4, pp. 4140-4147, Oct. 2018.
- Alambeigi, F.*, Wang, Z.*, Liu, Y.-H., Taylor, R. H., and Armand, M., "Toward semi-autonomous cryoablation of kidney tumors via model-independent deformable tissue manipulation technique," Annals of Biomedical Engineering (ABME), vol. 46, no. 10, pp. 1650-1662, Oct. 2018.

- 4. Wang, Z., Liu, Z., Ma, Q., Cheng, A., Liu, Y.-H., Kim, S., Deguet, A., Reiter, A., Kazanzides, P., and Taylor, R.H., "*Vision-based calibration of dual RCM-based robot arms in human-robot collaborative minimally invasive surgery*," IEEE Robotics and Automation Letters (RA-L), vol. 3, no. 2, pp. 672-679, Apr. 2018.
- Wang, Z., Lee, S. C., Zhong, F., Navarro-Alarcon, D., Liu, Y.-H., Deguet, A., Kazanzides, P. and Taylor, R. H., "Image-based trajectory tracking control of 4-DOF laparoscopic instruments using a rotation distinguishing marker," IEEE Robotics and Automation Letters (RA-L), vol. 2, no. 3, pp. 1586-1592, Mar. 2017.
- Navarro-Alarcon, D., Yip, H. M., Wang, Z., Liu, Y.-H., Zhong, F., Zhang, T. and Li, P., "Automatic 3-D manipulation of soft objects by robotic arms with an adaptive deformation model," IEEE Transactions on Robotics (T-RO), vol. 32, no. 2, pp. 429 - 441, Apr. 2016.
- Wang, Z., Yip, H. M., Navarro-Alarcon, D., Li, P., Liu, Y.-H., Sun, D., Wang, H., and Cheung, T. H., "Design of a novel compliant safe robot joint with multiple working states," IEEE/ASME Transactions on Mechatronics (T-MECH), vol. 21, no. 2, pp. 1193-1198, Apr. 2016.

Conference

- Zhong, F., Wang, Z.[†], Chen, W., Wang, Y., and Liu, Y.-H., "Hand-Eye Calibration of Surgical Instrument for Robotic Surgery Using Interactive Manipulation," IEEE Int. Conf. Robotics and Automation (ICRA), presented, 2020.
- 20. Sui, C., He, K., Wang, Z.[†], Lyu, C., Guo, H., and Liu, Y.-H., "A Spatial-Temporal Multiplexing Method for Dense 3D Surface Reconstruction of Moving Objects," IEEE Int. Conf. Robotics and Automation (ICRA), presented, 2020.
- Li, X., Wang, Z., and Liu, Y.-H., "Sequential Robotic Manipulation for Active Shape Control of Deformable Linear Objects," IEEE Int. Conf. Real-time Computing and Robotics (RCAR), pp. 840-845, 2019.
- Zhong, F., Wang, Y., Wang, Z.[†], and Liu, Y.-H., "Dual-Arm Robotic Needle Insertion With Active Tissue Deformation for Autonomous Suturing," IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), presented, 2019.
- 17. Sui, C., He, K., Lyu, C., Wang, Z.[†], and Liu, Y.-H., "3D Surface Reconstruction Using A Two-Step Stereo Matching Method Assisted with Five Projected Patterns," IEEE Int. Conf. Robotics and Automation (ICRA), pp. 6080-6086, 2019.
- Li, D., Wang, Z.[†], Ouyang, B., and Liu, Y.-H., "A Reconfigurable Variable Stiffness Manipulator by A Sliding Layer Mechanism," IEEE Int. Conf. Robotics and Automation (ICRA), pp. 3976-3982, 2019.
- Qian, L., Deguet, A., Wang, Z., Liu, Y.-H., and Kazanzides, P., "Augmented Reality Assisted Instrument Insertion and Tool Manipulation for The First Assistant in Robotic Surgery," IEEE Int. Conf. Robotics and Automation (ICRA), pp. 5173-5179, 2019.
- Alambeigi, F., Wang, Z., Hegeman, R., Liu, Y.-H., and Armand, M., "Autonomous Data-Driven Manipulation of Unknown Anisotropic Deformable Tissues Using Unmodelled Continuum Manipulators," IEEE Int. Conf. Robotics and Automation (ICRA), presented, 2018.
- Alambeigi, F.*, Wang, Z.*, Hegeman, R., Liu, Y.-H., and Armand, M., "A robust data-driven approach for online learning and manipulation of unmodeled 3-D heterogeneous compliant objects," IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), presented, 2018.
- Wang, Z., Li, X., Navarro-Alarcon, D., and Liu, Y.-H., "A unified controller for region-reaching and deforming of soft objects," IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 472-478, 2018.
- Sui, C., Wang, Z.[†], and Liu, Y.-H., "A 3D laparoscopic imaging system based on stereo-photogrammetry with random patterns," IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 1276-1282, 2018.
- Wang, Z., Liu, Z., Ma, Q., Cheng, A., Liu, Y.-H., Kim, S., Deguet, A., Reiter, A., Kazanzides, P., and Taylor, R. H., "Visionbased calibration of dual RCM-based robot arms in human-robot collaborative minimally invasive surgery," IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), presented, 2017.
- Alambeigi, F.*, Wang, Z.*, Liu, Y.-H., Armand, M., and Taylor, R. H., "Smart autonomous unknown deformable object manipulation using the da vinci research kit: from soft tissues to continuum robots manipulation," Hamlyn Symposium Surgical Robot Challenge, 2017. Best Innovation Prize
- Zhong, F., Navarro-Alarcon, D., Wang, Z., Liu, Y.-H., Zhang, T., and Yip, H. M., "Adaptive 3D pose computation of suturing needle using constraints from static monocular image feedback," IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 5521-5526, 2016
- Navarro-Alarcon, D., Wang, Z., Yip, H. M., Liu, Y.-H., Zhong, F., and Zhang, T., "Robust image-based computation of the 3D position of RCM instruments and its application to image-guided manipulation," IEEE Int. Conf. Robotics and Automation (ICRA), pp. 4115–4121, 2016.
- Yip, H. M., Wang, Z., Navarro-Alarcon, D., Li, P., and Liu, Y.-H., "A new robotic uterine positioner for laparoscopic hysterectomy with passive safety mechanisms: design and experiments," IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 3188–3194, 2015.
- Navarro-Alarcon, D., Yip, H. M., Wang, Z., Liu, Y.-H., Lin, W., Li, P., "Adaptive image-based positioning of RCM mechanisms using angle and distance features," IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 5403–5409, 2015.
- Lin, W., Navarro-Alarcon, D., Li, P., Wang, Z., Yip, H. M., Liu, Y.-H., "Modeling, design and control of an endoscope manipulator for FESS," IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 811–816, 2015.
- 3. Wang, Z., Li, P., Navarro-Alarcon, D., Yip, H. M., Liu, Y.-H., Lin, W., and Li, L., "Design and control of a novel multi-state compliant safe joint for robotic surgery," IEEE Int. Conf. Robotics and Automation (ICRA), pp. 1023-1028, 2015.

- 2. Navarro-Alarcon, D., Wang, Z., Yip, H. M., Liu, Y.-H., Li, P., and Lin, W., "A method to regulate the torque of flexible-joint manipulators with velocity control inputs," IEEE Int. Conf. Robotics and Biomimetics (ROBIO), pp. 2437–2442, 2014.
- 1. Yip, H. M., Li, P., Navarro-Alarcon, D., Wang, Z., and Liu, Y.-H., "A new circular-guided remote center of motion mechanism for assistive surgical robots," IEEE Int. Conf. Robotics and Biomimetics (ROBIO), pp. 217–222, 2014.

Patent

- Liu, Y.-H., Tong, C.-H., Zhong, F., Wang, Z., and Yip, H.-M., "Endoscope Manipulator and Method for Controlling the Same," US Patent App. 16/533,866, 2019.
- Sui, C, Liu, Y.-H., and Wang, Z., "Systems and Methods for 3D Laparoscopic Surface Reconstruction," US Patent App. 16/260,546 2019.
- 1. Li, P., Wang, Z., and Liu, Y.-H., "Compliant Safe Joint and Manufacturing Method Thereof," US Patent 10,208,806, 2016.